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The book is a monograph written as a result of research by the
author. The diffraction of plane electromagnetic waves by ideally
conducting bodies, the surface of which have discontinuities, 1s in-
vestigated in the book. The linear dimensions of the bodles are
assumed to be large in comparison with the wavelength. The method
developed in the book takes into account the perturbation of the field
in the vicinity of the surface discontinuity and allows one to sub-
stantially refine the approximations of geometric and physical optics.
Expressions are found for the fringing field in the distant zone.

A numerical calculation is performed of the scattering characteristics,
and a comparison 1s made with the results of rigorous theory and with

experiments.

The book is intended for physicists and radio engineers who are
interested in diffraction phenomena, and also for students of advanced
courses and aspirants who are specializing in antennas and the

propagation of radio waves.

b
b
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FOREWORD

First of all, one should explaln the term "physical theory of
diffraction". 1In order to 2o this, let us discuss briefly the histo-

rical development of diffraction theory.

If one investigates, for example, the incidence of a plane elec-
tromagnetic wave on a body which conducts well, all the dimensions of
which are large in comparison with the wavelength, then the simplest

solution of this problem may be obtained by means of geometric opties.
¢ optics

It is known that in a number of cases one must add to geometri
the laws of physical optics which are connected with the names of
Huygens, Fresnel, Kirchhoff and Cotler. Physical optics uses, together
with the field equations, the assumption that in the vicinity of a

reflecting body geometric optics is valid.

At the start of the Twentleth Century, a new division of mathe-
matical physics appeared — the mathematical theory of diffraction.
Using it, rigorous solutions to the problem of diffraction by a wedge,
sphere, and infinite cylinder were obtained. Subsequently, other
rigorous solutions were added; however, the total number of solutions
was relatively small. For sufficiently short waves (in comparison
with the dimensions of the body or other characteristic distances)
these solutions, as a rule, are ineffective. Here the direct

numerical methods also are unsuitable.

Hence, an interest arose in approximation (asymptotic) methods
‘which would allow one to investigate the diffraction of sufficiently
short waves by various bodies, and would lead to more precise and
reliable quantitative results than does geometric or physical optics.
Obviously, these methods must in some way be considered the most
important results extracted from the mathematical theory of diffractilon.

FTD-HC=23-259-71 . v



In the "geometric theory of diffraction" proposed by Keller, the
results obtained in the mathematical theory of diffraction of short
‘waves were exactly the ones which were used and generalized. Here,
the concept of diffraction rays advanced to the forefront. This
concept was expressed rather as a physical hypothesis and was not
suitable for representing the field in all of space: 1t was not
usable where the formation of the diffraction field takes place (at
the caustic, at the boundary of light and shadow, ete.). Here 1t 1s
impossible to talk about rays, and one must use a wave interpretation.

What has been said above makes it clear why a large number of
works appeared in which the diffraction of short waves was investi-
gated by other methods. Among those applied to reflecting bodies with
abrupt surface discontinuities or with sharp edges (strip, disk,
finite cylinder or cone, etc.) one should first of all mention the
works of P. Ya. Ufimtsev. These works began to appear in print in
1957, and it is on the basis of them that this book was written.

P. Ya. Ufimtsev studied the scattering characteristics by such
bodies by taking into account, besides the currents being excited on
the surface of the body according to the laws of geometric optics
(the "uniform part of the current" according to his terminology), the
additional currents arising in the vicinity of the edges or borders
which have the character of edge waves and rapidly attenuate with in-
creasing distance from the edge or border (the "nonuniform part cf the
current”). One may find the radiation field created by the additional
currents by comparing the edge or border with the edge of an infinite
wedge or the border of a half-plane. In certain cases, one 1is
obliged to consider the diffraction interaction of the various edges
— that 1s, the fact that the wave created by one edge and propagated
past another edge is diffracted by it (secondary diffraction).

Such an approach to the diffraction of short waves has great
physical visualizability and allows one to obtain rather simple
approximation expressions for the field scattered by various metal
nodies. This approach may be called the physical theory of diffractior




This name 1s applied to many works on the diffraction of short waves
in which the mathematical difficulties are bypassed by means of physi-

cal considerations.

It is clear that the physical theory of diffraction 1is a step
forward in comparison with physical optics, which in general neglects
the additional (edge) currents. The results obtained in this book
show that with a given wavelength the physical theory of diffraction
gives a better preclsion than physical optics, and with a given pre-
cision the physical theory of diffraction allows one€ to advance into
the longer wave region and, in particular, to obtain a number of
results which are of interest for radar where the ratios of the dimen-
sions of the bodies to the wavelength do not reach such large

values as in optics.

In addition, the physical theory of diffraction encompasses a
number of iﬁteresting'phenomena which are entirely foreign to physical
optics. Thus, in a number of cases the additional currents give, not
a small correction to the radiation field, but the main contribution
to this fleld (see especially Chapters IV and V). If a plane wave
{s diffracted by a thin stralght wire (a passive vibrator), then the
additional current falls off very slowly as one goes further from the
end of the wire. Therefore, the solution is obtained by summing the
entire array of diffraction waves (secondary, tertiary, etc.) which
successively arise as a consequence of the reflection of the currents
from the ends of the wires. It has a resonance character. Thus, the
problem of the scattering of the plane wave by a finite length wire
which is a diffraction problem of a slightly unusual type 1is solved
in Chapter ViI. The resulting solution 1is applicable under the condi-
tion that the diameter of the wire is small in comparison with the
wavelength and length of the wire, and the ratio of the length of the

wire to the wavelength 1is arbitrary.

The final equations whilch are deprived in this book and are used

for calculations are not asymptotic in the stpict sense of the word.



Therefore, it is natural to pose the question: in what way will the
subsequent asymptotic equations differ from them when at- last one
obtains them in the mathematical theory of diffraction? One can say
beforehand that the main term of the asymptotic expansion will not,

in the general case, agree with the solutilon obtained on the basis of
physical considerations: other (as a rule more complicated) slowly
varying functions which determine the decay of the filelds and currents
as one goes further from the edges and borders, and also the diffrac-
tion interaction of the edges and the shadowing of the edge waves will
figure in the main term. However, the refinement of the slowly vary-
ing functions in the expression for the diffraction field is not able
to seriously influence the quantitative relationships. This 1s seen
from a comparison of the results obtained in this book with calcula-
tions based on rigorous theory and other approximation equations, and
also with the results of measurements.

The reiationshiés obtained in this book also should help the
development of asymptotic methods in the mathematic a1l theory of dif-
fraction, since they suggest the character of the approximations and
the structure of the desired solution.

L. A. Vaynshteyn



INTRODUCTION

In recent years, there has been a noticeable increase of interest
in the diffraction of electromagnetic waves by metal bodies of complex
shape. Such diffraction problems with a rigorous methematical formu-
lation reduce to an interpretation of the wave equation or Maxwell
equations with consideration of the boundary conditions on the body's
surface. However, one cannot succeed in finding solutions in the
case of actual bodies of a complicated configuration. This may be
done only for bodies of the simplest geometric shape — such as an
infinitely long cylinder, a sphere, a disk, etc. It turns out that
the resulting solutions permit one to effectively calculate the dif-
fraction field only under the condition that the wavelength is larger
than, or comparable to, the finite dimensions of the body. In the

"quasi-optical"case, when the wavelength is a great deal less than the
dimensions of the body, the rigorous solutions usually lose their
practical va}ue, and it is necessary to add to them laborious and
complicated asymptotic studies. Here, the numerical methods for the
solution of boundary value problems also become ineffective. There-
fore, in the theory of diffraction the approximation methods which
allow one to study the diffraction of sufficiently short waves by
various bodies acqulire great importance. |

The field scattered by a given body may be calculated approxi-
mately by means of geometric optics laws (the reflection equétions,
see,for example [1-3]), from the principles of Huygens-Fres7bl and
from the equations of Kirchhoff and Cotler [3-6].

The most common method of calculation in the quasi-optic case _
is the principle of Huygens-Fresnel in the formulation of Kirchhoff
and Cotleb — the so-called physical optics approach. The essence
of this method may be summarized as follows.
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Let a plane electromagnetic wave fall on some 1deally conducting
body which is found in free space. In the physical optilcs approach,
the surface current density which is induced by this wave on the
irradiated part of the body's surface is (in the absolute system of

units) equal to

jo= 5 [nH], (4)

where ¢ 1s the speed of light in a vacuum, n is the external normal
to the body's surface, HO is the magnetic field of the incident wave.
On the darkened side of the body the surface current is assumed to be
equal to zero (jo = 0). Equation (A) means that on each element of
the body's irradiated surface the same current 1s exclted as on an
ideally conducting surface of infinite dimensions tangent to this
element. The scattered field created by the current (A) is then
found by means of Maxwell's equations.

It is obvious that in reality the current induced on the body's
surface will differ (as a consequence of the curve of the surface)
from the current JO. The precise expression for the surface current

density has the form

Y (B)
where Jl is the surface density of the additional current which
results from the curve of the surface. By the curve of the surface,
we mean any of 1its deviations from an infinite plane (a smooth curve,
a sharp bend, a bulge, a hole, etc.). If the body 1is convex and
smooth and its dimensioas and radii of curvature are large in compari-
son with the wavelength, then the additional current is concentrated
mainly in the vicinity of the boundary between the illuminated and
shadowed parts of the body's surface. But if the body has an edge,
vend, or point, then the additional current also arises near them.
The additional current density 1s comparable to the density JO, as a
rule, only at distances of the order of a wavelength from the corre-
sponding edge, bend, or point. Thus, 1f the body's dimensions



significantly exceed the wavelength, the additional currents occupy
a comparatively small part of 1ts surface.

Since the current excited by the plane wave on an ideally con-
ducting surface is distributed uniformly over it (the absolute magni-
tude of its surface density 1s constant) then the vector J may be
called the "uniform" part of the surface current. The additional
current Jl which 1s caused by the curve of the body's surface we will
henceforth call the "nonuniform" part of the current. In the physica:
optics approach, only the uniform part of the current is considered.
Therefore, it 1is no wonder that in a number of cases it gives unsatis
factory results. For a more precise calculation, 1t 1s necessary to
also take into account the nonuniform part of the current.

In this book, the results of the author relating to the approxi-
mation solution of diffraction problems are discussed and systematizec
Essentially, these results were briefly discussed in a number of
papers [7~14]. Roughly at the same time, the works of other authors
devoted to similar problems appeared. We will discuss them in more
detall (in §25) after the reader becomes accustomed to the concepts
being used in diffraction problems of this type. For the present, let
us only note that in these works, as a rule, other methods are used.

In the book, problems of the diffraction of plane electromagnetic
waves by complex metal bodies, the surfaces of which have discontinui-
ties (edges), are investigated. The dimensions of the bodles are
assumed to be large in comparison with the wavelength, and their
surface is assumed to be ideally conducting.

Obviously, if the edges are sufficiently far from one another,
then the current flowing on a small element of the body's surface in
the vicinity of its discontinuity may be approximately considered to
be the same as on a corresponding infinite dihedral angle (a wedge).
In fact, in Chapter I it is shown (see also [5] §20) that the nonuni-
form part of the current on a wedge has the character of an edge



wave which rapidly decreases with the distance from the edge.
Therefore, one may consider that the nonuniform part of the current

is concentrated mainly in the vicinity of the discontinuity. By means
of this physically obvious assumption, the field scattered by a strip
(Chapter I), by a disk (Chapter II), by a finite length cylinder
{(Chapter III) and by certain other bodies of rotation (Chapter Iv)

is calculated.

For a more precise calculation, however, it is necessary to keep
in mind that the actual current distribution in the viecinity of the
body's edges differs from the current distribution near the edge of
the wedge. Actually, the edge wave corresponding to the nonuniform
part of the current, propagated along the body's surface, reaches the
adjacent edge and undergoes diffraction by 1t, exciting secondary edge
waves. The latter in turn produce new edge waves, etc. If all the
dimensions of the body are large in comparison with the wavelength,
then as a rule it is sufficient to consider only the secondary dif-
fraction. This phenomenbn is studied in Chapter V using the example

of a strip and disk.

§
In the case of a narrow cylindrical conductor of finite length,

the edge waves of the current decrease very slowly with the distance
from each end. Therefore, here it is impossible to 1limit oneself to
a consideration only of secondary diffraction, and it 1s necessary to
investigate the multiple diffraction of edge waves. Chapter VII is
devoted to this problem.

The uniform and nonuniform parts of the current are more than
auxiliary concepts which are useful in solving diffraction problems.
In Chapter VI it 1s shown that one 1is able experimentally to separate
from the total fringing field that part of it which is created by
the nonuniform part of the current. There, it 1s also shown that the
depolarization phenomenon of the reflected signal is caused only by

the nonuniform part of the current.



Let us note the following feature of the method discussed 1n the
book. A physical representation of the nonuniform part of the current
is widely used in the book, but nowhere are its expiilcit mathematical
expressions cited. This part of the current 1s generally not expressed
in terms of well-known functions. Obviously a direct integration of
the currentgiwhen calculating the fringing field 1s able to lead only
to very complicated and immense equations. Therefore, we will find
the fringing field created by the nonuniform part of the current on
the basis of indirect considerations without direct integration of

it (see especially Chapters I - IV).

The method by which the diffraction problems are solved in this
book may be briefly summarized as follows. We will seek an approxi-
mate solution of the diffraction problem for a certain body by first
having studied diffraction by its separate geometric elements. For
example, for a finite cylinder such elements are: the lateral surface
as part of an infinite cylindrical surface, each base as part of a
plane, each!section of the base rim as the edge of a wedge (the curva-
ture of the rim in the first approximation may be neglected). Having
studied the diffraction by the separate elements of the body, we will
obtain a representation of the nonuniform part of the current and of
the field which is radiated by it. Then secondary, tertiary, etc.
diffraction is studied — that is, the diffraction interaction of the

various elements of the body 1s taken into account.

This method appeals to physical considerations, not only when
formulating the problem but also in its solution process, and in this
way differs from the methods of the mathematical theory of diffraction.
Therefore, such a method may be referred to as the physical theory
of diffraction. -

A whole series of other diffraction studies which appeared in
the last five to ten years also are able to relate to the physical
theory of diffraction. The first work which contained the idea of
the physical theory of diffraction 1is evidently the paper of
Sehwarzschild [15] which was published at the beginning of this
century and was devoted to diffraction by a slit. ‘



One should note that approximate solutions of diffraction
problems would be impossible without the use of the results obtained
in the mathematical theory of diffraction. In particular, the
rigorous solution to the problem of diffraction by a wedge which is
attributed to Sommerfeld [16] is widely used in this book. In
Chapter I this solution is obtained by another method. The works of
Fok [17, 18] served as the starting point for numerous studies on
diffraction by smooth convex bodies. The rigorous solution of the
problem of diffraction at the open end of a wave gulde [19] revealed
the mechanism for the formation of primary diffraction waves, and
their shadowing by the opposite end of the wave guide., The rigorous
theory as applied to a strip and disk allows us to examine the
precision of the approximation theory (see Chapter V).



CHAPTER I

DIFFRACTION BY A WEDGE

As was already said in the Introduction, the fleld scattered by
a body may be investigated in the form of the sum of the filelds being
radiated by the uniform and nonuniform parts of the surface current.
The uniform part of the current 1is completely determined by the geo-
metry of the body and the magnetic field of the incident wave. The
nonuniform part generally 1s unknown. However, one may approximately
assume that in the vicinity of the discontinuity of a convex surface
it will be the same as on a corresponding wedge. Therefore, it 1s
necessary for us to bégin by studying the diffraction of a plane elec-—
tromagnetic wave by a wedge. This chapter will be devoted to this
problem. First we will investigate the rigorous solution of this
problem (§ 1 and 2). Then we will find its solution in the physical
optics approach (8§ 3). The difference of these solutions determines
the field created by the nonuniform part of the current (§ 4).

§ 1. The Rigorous Solution

The rigorous solution to the problem of diffraction of a plane
wave by a wedge was first obtained by Sommerfeld by the method of
branching wave functions [16]. Later, the diffraction of cylindrical
and spherical waves by a wedge also was studied. A rather extensive
bibliography on these problems may be found, for example, in the
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paper of Oberhettinger [20]. Since the problem of diffraction by a
wedge lles at the base of our studies, we considered it advisable not
only to present the results of 1ts rigorous solution, but also to give
them a new more graphic derivation. The idea for this derivation
follows directly from the work of Sommerfeld. Sommerfeld found the
solution to the problem in the form of a contour integral, and then
he transformed it to a series. However, one may proceed in the oprw
site direction: first find the solution in the form of a series and
then give its integral representation. Such a path seems to us more
graphic, and is discussed in this section. The necessity for a
detailed derivation 1is caused by the fact that the results of Sommer-
feld [1€] are not represented in a sufficiently clear form, which

hinders their use.

Let us assume there 1is in free space (a vacuum) an ideally con-
ducting wedge and a cylindrical wave source Q parallel to 1its edge
(Figure l);f Let us introduce the cylindrical coordinate system r, ¢,
z in such a)way‘that the z axis coincides with the wedge edge, and
the angle ¢ 1s measured from the irradiated surface. The external
wedge angle will be designated by the letter a, so that 0<p<a . The
coordinates of the source Q we will designate by Ty ¢O.

Let us investigate two particular cases for the excitation of an
electromagnetic flield. In the first case, it is excited by a "fila-

ment of electric current”

ji=—iopS(r—r,, 9—9,) (1.01)

in the second case, 1t is excited by a "filament of magnetic current"

I7=—llom3(r —ry, $— ). (1.02)
The quantities P, and m, here designate, respectively, the electric
and magnetic moments of the filament per unit length along the 2z axis
w 1s the cyclic frequency %*”""’é“;: s 8(r—ry, —3y)=8(r —ry}3[r(p— ?3)1
is a two-dimensional delta function ghigh satisfies the condition



QY
4@23%%2?1 2

Figure 1. The excitation of a wedge-
shaped region by a linear source.

Q - source; P - the observation point;
I - the integration contour in Equation (1.10).

SS o(r —ry, ym?o)rd}dqazl
with integration over the neighborhood of the point rys ¢0.

Here and henceforth, we will use the absolute system of units

(the Gauss system), and we will assume the dependence on time is in

the form e ™

-

In the first case, the "electric" vector potentilal Az satisfies

the equation (see, for example, [4])

AN 1A= (1.03)

¢

and the boundary condition

A*=0 with  ¢—p0 and p—a (1.04)
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In the second case, the "magnetic'" vector potential A? satisfles the

equation

AATH AT = I (1.05)

and the boundary condition

JdAT

op==0 with §=0 and ¢=a. (1.06)

It 1s natural to seek the solution of the nonhomogeneous

Equations (1.03) and (1.05) in the form

(o
N a,J, (kr) H (kry)siny, gpsinvg withr<re,
e =1 ‘ -t o '
A - ‘
N aJ, (kr,) H" (kr)sinv,gysin v,¢ withr > ro;
=1 . ]
F'm .
N 0,7, (kr) HY (kry) cos v,py cos v,p with r< ro,
Am { 2=0 y y .
o
}: b,J, (kry) HS" (kr) cos v, cosv,p with r>r,, (1.08)
5=0 o »

(1.07)

V,=S°“'-

The products - @

J,. (kr)sinv,p J, (kr)cos v,

and , "
H i"’ (kr)sinv,p H (kr) cosv,9 ’ (1.09)

are the partial solutions of Equations (1.03) and (1.05) without the
right-hand member which satisfy the boundary conditions (1.04) and
(1.06). The remaining factors entering into Equations (1.07) and-(1.0t
ensure the observance of the reciprocity principle and the continuity

of the fleld on the arec r = PO' The Bessel function Jv (kr) enters
3

these equations when r < LW because 1t remains finite when r -+ 0,
and the Hankel function HQNMT is taken when r > r; in order that the

solution satisfies the radiation condition.



The coefficients ag and bs may be determined by means of Green's

theorem

ff‘u dz..,..SAuds dS._..rdrd? (1.10)
L

for the contour L in the plane z = const which 1s shown in Figure 1.
Here, the external normal to the contour L is designated by the letter
n. Applying Equation (1. 10) to the functions A and A and performing
the limiting transitions ry > Ty and r, * T, in it, we obtain

/AL
&z
AT
\a

Since here the integration limits are arbitrary, it follows from fhe
equality of the integrals that the integrands are equal:

6'4; ) 4rk 5

— rode =i — 5 (9 — @,) rod

ret0 or roe—0 0 P { Te pz (? ?0) 0 ?r
AT

 Tor

4
,..o) d?-——‘“:fmzja(?"“%)'od?'

ro+0

0,1; BA‘ 4nk p‘
= —_—— o
7l B Tl P (p— %)- (1.11)
‘M? ’M'zn . dnkm, o
P — e ==1 o(®p — . .
or ro40 ar ro—0 Te ( ?0) (l 12 )

Now let us substitute Expressions {(1.07) into Equality (1.11) and
multiply both members of the liatter by sinvy . Then integrating the
resulting equality over ¢ in the limits from 0 tc a, we find

e.="L tp. ' (1.13)

In a similar way, let us determine the coefficlents

4.2 (1.14)

a kmlo

b‘:t.

where

(1.15)

gy ==—5 g ===, .=l



Consequently, the electric current filament excltes, in the space

outside the wedge, the fiﬁld

E,=ikA]=
[ [+
R CL PP n . .
i—— Kk p, E H ., (kry) ._I,. (kr) sin v,p, sin v,

! sz

with r<lrp

o )

, 4=t . .

i—kp, E J, (kro) H ‘,"’ (kr)sin v,p,sin v,
s=l

l with r>rg

E,=E,=0, H=--rotE,

(1.16)

and the magnetic current fllament excites, outside the wedge, the

field

[ o .
42 ko, Y) el (o, (k) coswdy cosnp
=0 .' *
with r<rp

1

- .
i -4-?— k*m, E e, J, (kry) H‘,'.’ (kr) cos v, Py COS V.9
s=0 '

‘ with r>7o
: 1
-Hy=H,=0, E=—rotH. (1.17)

Now using the asymptotic equation for fhe Hankel function when
W/ [21], we have

ifwr,—>v -2 —%
H0 ) =Y o T g (1.18)

Then Expressions (1.16) and (1.17) in the region r < r, take the form
. 4t

E =i— k'p.H)" (kry) X

b *ii ”
X Z e * 7 . (kr) sin v, 9,510 v,P,

Pt .

(equation continued on next page)



Ant
Hy==i Z—k'm.H} (kry) X

oo —a%,
3 e
X E e J,_ (kr) cos v,p, cos v,

4
%

or
E,—inh* ,H‘;"(&’G) [1(r, 'qi—«— 90) — u(r, 24 90)ls ( )
, : : 1.1
Hy— it HO (kro) [, ¢ — o)+ (0 9-F20), ’
where
— hid -—!-:-‘v'
u(r, .p)z.z-;: 2 ge ° ','a (kr)cosv,¢ (1.20)
5 z=l) ’ g
(=9 ==P) -

Let us’ﬁote, furthermore, that in free space the fleld of the

electric filament with a moment p, is determined by the relationship
E,=izk*p,H (kr,),

and the field of the magnetic filament with the momen
by the relationship P

, 7
T (1.22)

He=izk*m,H g)(kfo). //’ .

Therefore, the expressions in front of thefsquare brackets in Equations
(1.19) may be regarded as the primary field of the fllament — the
cylindrical wave arriving at the wedge edge Now removing the fila-
ment of current to infinity (ro ad m), let us proceed to the incident

plane waves

Ezzgﬂ;éél&rca(?“?a}' :g?-_:ﬁ;.:.—o (1.23)

and



H, ::Hoz-ew‘kr cos (?“‘?o)", H, mH?m 0. (1.24)

The field arising with the diffraction of these waves by the wedge

will obviously have the component

E,=Eglu(r, 9—) —u(r, 21 %) (1.25)

and
H,:.-«:Hoz[u(r, ?"‘"?0)"‘"“(’3 (?+?o)l' (1'26)

Let us find the integral representation for the function u (r,
$). For this purpose, let us use the equation (see [16], p. 866)

4

J (kr).....-—-J i krcoap+v (p ;..)]dp
(1.27)

where the 1limits I - III mean that the integration contour goes from
region I to region III (Figure 2). The cross-hatched sections in

the plane of the complex variable B (B') shown in Figure 2 are regions
in which Imcosp>0 (Imcosp'<<0). Therefore, in the sections of the con-
tour extending to infinity the integrand strives to zero, ensuring

the convergence of the integral. Substituting Expression (1.27) into

Equation (1.20), we obtain

u(r, q’)z
i Hi ' oo
fkrc — iv — )
:T:E;Sekr 039[1-{‘2 L8 +v)+z‘ 3 "’]dﬁ
I s==} s== B
After summing the infinite geometric progressions and replacing the
variable 8 by B' = B - m, the function u (r, ) acquires the form
uir, §)=

ur . , | | o
— e a—i&f cos & . — 1 d@', .
L= i3 +9) b= {3~} B

R—] jo—a




Figure 2. The integration contours Figure 3. The integration contour
in the complex plane B. in Equation (1.28).

As a result; we obtaih the well-known integral of Sommerfeld

-
L (3+d)

] 1 : e—(krcosl’ ‘
u(r, $)=-- | ————dj.
2 J . d (1.28)

The integration contour C is shown in Figure 3 and consilsts of
two infinite branches. Since the integrand expression has poles at
the points Bm=2am —$ (m=0, =1, =2,...), then for the values of ¢ corre-
sponding to the space outside the wedge (0<¢<4a} the function u (r, V)
may be represented (with =<{a<2r, 0<@,<z ) in the following way:

u(r, Y=o(r, P+e M yith—2l9<zn, -
ulr, 9)=o(r, 4) withzs<¢<2a—x,
Wl ) =0lr, e e
with 22— 2 < $<2a, (1.29)
where
1 e*‘*f’!c“;
B) == d8,
ol P=2g X P

|



or

-

Tal

TP
U(f, ?)mWSlﬂ -

The integration contours D and DO
3 and 4.

With an arbltrary incid
two cases may occur:
the wedge
faces of the wedge 3—7<{P <7

functions u (r, ¥ ) corresponding to these cases.

(Figure 5), we have

u(r, @ — o) =
=0(r, ?~90)+e—1krcos (5 —%)
E w(r, 9+%) =
=uv(r, 9+ +e (s+7e)

u(r, —9)=
=0 (r, P — ?0) + e-—-lkr cosi(z — 9.}

u(ry ?+?Q)A:‘_=0(r, ?_*__?0)

e - =0l 2= |
alr, e+w)=0(n o2

and in the case a2 —x L Pl ®
—olr, g — g0 Fe T
u(r, ?+?0)=’=
—u(r, 90 e
- ouln ?"?o):“—;
mf)(l’, P m?o)_{_e“lkrfzos (5 —9a)
a(l'. ?+?3)$Q(r' {?+?o)
!l(r, ?""?0)::

mg(f, ?”?9)—*‘8“5&!&&
u(r, 4+ o)==

=v(r, 9+ %)+

(0<9,<<a—m) , and (2) the plane wave

(g~ 75

elk! cos (dc

nt n
608 = — cos— (¢ +4%)
(]

-

(1.30)

are shown, respectively, in Figures

ence of a plane wave on a wedge,
(1) the plane wave "{1luminates
"illuminates" both

Let us write out

[With0<?<“ — Qo

L,

}Withn—-—%<'2<ﬁ+?m |

4
with =+ <?<a

(Figure 6) we have

]

[w;%g(?< T — Po»

J

- with
18— P 28— —Po»

with
02— % — Pyl P =4

iy 08 (T8 § —Ta)

one of

" only one face of

in more detail the

In the case Ppla—TT

(1.31)

(1.32)




The direction ¢ = m - ¢4 corresponds to the ray reflected in a specular
fashion from the first face (we will consider as the first face that
face from which the angles are cal~ulated), and the direct;on P==

=2 — x— ¢y corresponds to the ray reflected specularly from the second
face (Figure 5 and 6). The functions e—res¢  describe plane waves of
unit amplitude: e~ *®~" describes the incident wave, e~ /reorre
describes the wave reflected from the first face, and g=itrcos(a—e=® —

the wave reflected from the second face.

Dy

Figure 5. Diffraction of a plane
wave by a wedge. The plane
wave irradiates only one face of
Figure 4. The integration contour the wedge. ¢, 1s the angle of

in E ti 1.30).
n hquation ( 3 ) incidence. The line ¢ = 7 - ¢0

is the boundary of the reflected

plane wave, and the line
¢ =m+ ¢, is the boundary of

the shadow.

Figure 6. Diffraction by a wedge.
The plane wave irradiates both
faces. The line ¢ = 204 - T = ¢0

is the boundary of the plane wave
reflected from the second face

(¢ = a).




§ 2, Asymptotic Expressions

The integral

e"kr cos € dz

cos%.-—-ncos ;:-*(@—{-K)’ (2.01°

{ =
olr, §) = o 0=~ g

in Equations (1.31) and (1.32) generally is not expressed 1n terms of
well-known functions. However, when kr >> 1 1t may be calculated
approximately by the method of steepest descents [21]. In integral
(2.01), changing for this purpose to a new integration variable

s==/2e snn-—-—-., s*=i(l —cosl),

we obtain

sin — kr +
— n -—ln‘d‘
o(r, §)= 7-——--2 — 7 +
COS‘-‘ - COS CO!“"" (2 ng

where

= . (2.03.

It is not difficult to see that the point s =0 is a saddle point:
as one goes further from it along the imaginéry axis (Re s = 0) in
the plane of the complex variable s, the function e™**" most rapidly
increases, and as one goes along the real axis (Im s = 0) it decreast
most rapidly. Therefore, when kr >> 1 the main contributlion to the
integral (2.02) is given by the integrand in the section of the
contour in the vicinity of the saddle point (s = 0). ’

The method of steepest descents 1s carried out by expanding the

integrand (except for the factor e~ ) into a Taylor series in powe
of 8. This series is then integrated term by term. If the integran
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expansion converges only on part of the integration contour, the re-
sultant series obtained after the integration will be semiconvergent
(asymptotic). Limiting ourselves to the first term in 1t, we obtain:

o
“““}'{' kr+ ,
a(r, §) = —= * e ds —=
. O
.

7
¥ 2”‘«:09 —-—cos

lis
n!ﬂ

cos %-—-cos-;; Vz’" ' ’ (2.04)

s
et

The remaining terms of the asymptotic series have a value on the order

of and higher.

1
&n*?

Expression (2.04) is valid with the condition ( osf--——cosi)/ﬁ?>1
and describes that part of the diffraction field which has the charac-
ter of cylindrical waves diverging from the wedge edge. With the
incidence of the plane wave (1.23) on a wedge, the electric vector of
which 1is parallel to the wedge edge, the cylindrical wave 1s determined
in accordance with (1.25) and (2.04) by the equation

E,:‘—‘-‘--*H,=E.g'(!’(f.?—‘-'?.)-—'ﬂ(f.?‘*’?.)1:"*

i(lr+-;-)
= Bl Sy
- * ‘ (2.05)
where
sin — 1 i
I=—=—\"= e P ) )
cos - —cos o cos T — O Ty (2.06)

-

When the wedge is excited by the plane wave (1.24), in which the mag-
netic vector is parallel to the wedge edge, the cylindrical wave has

the form
Hy== E;’::H,;-{v(f,?w?g)—*'@(f,?"l"?en“

:(::4-«;})

. 2
== e

Viar (2.07)



where

=
sig — "
n 1 1
8="7 (w x *:--?.+ n H‘?o)' (2.08)

— e GO i
] n n cos 7 cos n

S

In the vicinity of the shadow boundary (¢ Nom o+ ¢O) and near the

directions of the mirror-reflected rays (P==m—% ?= 2a — T — P)
Expressions (2.04) - (2.08) are not valid, since the poles

i 1= ’
= 4 L, e = 4 . 7
$, = /2 e Slﬂ—"“i‘i, $, == V2 e sin kmz — -——;':'?)

of the integrand in (2.02) are close to s = 0 and, consequently, 1ts
expansion in a Taylor series loses meaning. Physically, this result
means that in the indicated region the diffraction wave does not re-
duce to plane and cylindrical waves, but has a more complicated char-
acter. An‘ésymptotio representation of the function v (r, ¢) in this
region was obtained in 1938 by Pauli [22]; here we will present the
derivation of the first term of the asymptotic series obtained in [22].

Let us multiply and divide the integrand expression in Equation
(2.02) by the quantity

cos -} cos{=1i(s* —is}) (sﬁ::?cos’-—g—)- (2.09)

and let us expand into a Taylor cseries 1in powers of s the functlon

cos $$cos

® $+¢ [
(cos r—con 3= Joor g

which no longer has a pole at the saddle point (s = 0) when ¢ = ¢ +
t by =T Limiting ourselves in this series to the first term, we

obtain

L a % )

- 3in~3- | !(&f 1')ﬁb V‘A s‘
7 n i T a—trs

o (.9 ="11- Sy S;‘“{;&"’*
T ite

(2.10)



The integral here may Dbe represented 1n the form

o [+ -4 o
—krst —ikrs2 (¢ — (s=isD ¢
T ds=e 0 fds | 2 dt.
st—ish
' 3 X

Changing the order of integration here, we find

o

—hrst —ikest T 2 dt I3 »
S ¢ ds=-¢e °Se°y——-—r§e‘“ dx =

0 s'u—isg kr
::-:.V;— ~fhrsg T e""d‘l
sl (2.11)
Vir sl
and finally
L ‘&l T LA
sing ~— | cos ~5~
2
o(r9)=— - ¢.e'“'°“”‘ ---—--e},; X
cos ——— cos -
* “; v }
X 3 e“dq.
Yﬁ;icos-%l . ‘ (2.12)

The next term of the asymptotic expansion for the function v (r, ¥)
has a value, whose order of magnitude depends on the cbservation
direction: in the vicinity of the border of the plane wéves(?=7“:t?d
its order of magnitude 1s ;%; , but far from it the order of magnitude
is 1/kr in comparison with the term written in (2.12).

It is convenient to represent Expression (2.12) in the following

form:
E
. 9 :iu—%—-m-—%‘ '.4" .t e"‘T
f <
0([’,@):*«;‘—- = ) 2 --—;;’.—..—-X
cot-;-—cm-;
Yﬁ}&n%
x
- D)
Rk : {(2.13)



Here the absolute value of the lower 1limit of the Fresnel integral
always equals infinity, and its sign is determined by the sign of
cos Y/2. Therefore, when passingfthrough the boundary of the plane
waves (Y = ¢ + ¢O = 1) the lower 1limit changes sign and the Fresnel
integral undergoes a finite discontinuity, ensuring at this boundary
the continuity of the function u (r, ¥) and consequently of the
diffraction field. Actually, by means of the well-known equation

L 4

~ .
p, Vs 7
5‘e = (2.14)

it is not difficult to show that

elkr

: ikr
00314~0)x=5§—, o(r,x—0)=—=—- (2.15)

and consequently

u(r,zi-())z-—;—em. (2.16)

In view of the asymptotic relationships

—

.

A .
i ei?!
[ <o =55

-] —

i iet
Pdg=—5 (with p>1)

Qo

(2.17)

8

oy ¢
Pauli's Equation (2.13) is transformed with V/2m1055#>1 to the
Expression (2.04). As was already indicated above, 1t determines the

cylindrical waves diverging from the wedge edge.

By means of Equation (2.13), one may also calculate the fleld in
the vicinity of the direction ¢ = 200 = m - ¢OlF—-that is, near the~
boundary of the plane wave reflected from the face ¢ = a; for this
purpose, it 1s sufficient toc replace ¢ by a - ¢ and ¢O by a -~ ¢O.

It is also interesting to note that in the case of a half-plane
(n = 2) Equation (2.13) gives the expression



® sttty
vV 3,
e 2ke cos

_ikrcond ©
o(r, §) =e ="M 7= XS e'’dy,
' ) (2.18)

o0 €N~
2

which completely agrees with the rigorous solution. Actually, with

o = 2w, when the wedge 1is transformed to a half-plane, integral (1.30)

equals

cos

' i eltrcost
U(f'q")w““‘:;;;j_ e i
‘ 2.19

purpose, let

and it may be reduced to a Fresnel integral. For this
= 0. Summing

us divide the contour D0 into two parts by the point ¢
the integrals over these parts of the contour, we find that

2 ‘ -
i ihrcost 1 1 -
o(r)=—= j‘ e =\ 4=
8 cos — cos —5—
ikrco:(cos___.

=’“"°"cos"" ‘S‘ cos §  cos§ daC.

P

Now changing to a new integration variable é==y/§ev4gn*§- and taking

into account Equation (2.09), we obtain

’ ‘ kf--‘" --krs‘
v(r,tp)—-—z——!'lcos-—~e j (2.20)

0

The integral here was already calculated by us. Turning to Equation

(2.11), we arrive at Expression (2.18) which — together with rela-
tionships (1.25), (1.26) and (1.31) — give us the rigorous solution
to the problem of the diffraction of plane waves by an ideally

conducting half-plane.
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§ 3. The Physical Optics Approach

) In the physical optics approach, the fringing field 1s sought
as the electro-magnetic field created by the uniform part of the sur-

face current

Jo=g-[nH,]. (3.01)

Let us recall that here n designates the external normal to the body's
surface, and H designates the magnetic vector of the incident wave.
First let us investigate the case 0-7¢,<a-—=, when the incident plane
wave irradiates only one face of the wedge (Figure 5).

From Equation (3.01) it follows that the density of the uniform
part of the current being excited on the irradiated face by plane
waves (1.23) and (1.24) has the following components, respectively

-0 C g : ~lhx COs % N L0
]z ‘;::Q;:.b‘)z.Sln(POe {o’ Ix“!l/_——o (3'02)

and

]2 :»2-%]—{010"”‘3""“05 ¥o, ]3 == ]: =={. (3.03 )

For the purpose of calculating the field radiated by this current, we
will use the following integral representation of the Hankel function

(see [16], p. 866)

' 0 B {06 0o
1 ip cos 1 io ¢t
Hé)(f’):-;‘ B'Pcmgd;a::—i—-— g el? gt
0

(3.04)

Assuming here p = kd and changing to a new integration variable
r = d sh t, we obtain

FTD~HC=-23-259~71 18
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It 1s easy to show by means of Equations (3.02), (3.03) and (3.05)
that the vector potentilal

oo PSS
eik Ve (x—t)74-43

e
. Vi (x —gF 3 (3.06)

A(x,y,O)::—%«-Sj“(E)d'i
0.

has the components

A= Egsinge 1, A=A, =0, C(3.07)
if the wedge is excited by plane wave (1.23), and
Ar=—tHyl, A,=A=0, (3.08)

if the wedgé:is excitéd by plane wave (1.24). Here, Il designates
the integral

1, — j‘ e-ikE €os %o Hé”(k ;/y’—*—(.t——-&)’)di- (3 . 09)
L)

Let us transform it by using the relationship

—_— R od—w2)
HY (/T o) =— j T tw
-l

v

(0= /F —a* Imv>0,d>0), (3.10)
It is not difficult to establish the correctness of this relationship
by verifying that it changes into Expression ;.04) with the substi-
tution w = k sin t, v = k cos t and ky/d*}z'=p . As a result

t of o lyl~wx)

!‘zg j‘c(kcos?.«-—w) dw, (3.11)

e
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where the integration contour passes above the pole w = k cOS ¢O’

Let us note that integral (3.11) 1is a function of |y|, and let
us change to polar coordinates according to the equatidﬁs

X ==rCOS 9,
ly| =rsing with o<,
lyi=—rsinpwith ¢>= (3.12)
Furthermore, by carrying out the substitution
w=—kcost (0="rksin), (3.13)
we obtaln
1 ol tr cos (E—¢) .
I‘:“'“"”??:715"cos(p.—}-cosedE withe<lm, |
P ,
‘1 oikrcos(th) [
’i“‘"’?&“zi' cas?.-{v-cosx&dE withe>s=. (3.18)
F . : J

The integration contour F is shown 1in Figures 7a and 7b. In Figure 7a
the cross-hatched areas indicate the sections in the plane of the com-
plex variable { in which Imcos@—g¢)>0; in Figure 7b, the cross-hatched
areas indicate the sections wherelmcos(¢} ¢)>0 . Now let us deform the
contour F into the contour G1 (G2) for the values ¢<=®(p>7), and let

us change to a new integration variable

{=E—¢ withe<<m, }
{=t—(Qr—e¢)withp>n. (3.15)
As a result, we obtain the following expressions:
0 withe>%— %
. 1 eikrcostd?‘» \
l’”micos?,—{—coso:«{-?)'*' 2 gikreos(isa)
s ksin g, (3;16)

with ¢<<®*—%0a

if ¢ < 7 and
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Figure 7. The integration contour in
Equations (3.14).
0with @< 7+ Por
. 1 : e”“'m‘(d«: .
1y ""T;‘/éi cos ¢q + cos (& — §) + 2 —ikr cO8 (§ ~ Tq)
L4 E . kSin?.
with >+ e
(3.17)
if ¢ > w. The integration contour DO is shown in Figure 4.
By means of Equation (3.06) and the equality
E,=ikA, (2.18)
let us find the fileld which is radiated by the uniform part of the -
current excited on the face ¢ = 0 by the plane wave (1.23)
(o} (g, ) — e eH O with 0L p LR — P
e of (9, 7) withz— 9, <?<™
oot S |
Eys 1 QT(‘%, ?i) Withﬁ<?<“+?v
s;;;“{és 9,) —e "M yith=+elP<% (3.19)




where

. 0 elkrccsﬂdc
9 (9 90).,“%5111‘?4; cos gy cos(§ - ¢) - (3.20)

(4

It is not difficult to see that with a—=z<9,<= , when both faces of
the wedge are illuminated, the fleld excited by the second face

(¢ = a) will be described by the same equations if one replaces ¢ by
a - ¢, and ¢O by o - ¢O in them.

Adding the field being radiated by the uniform part of the
current with the incident plane wave (1.23), we obtain the diffraction
field in the physical optics approach. It equals

r 4 ~{kr cos ( ) ik cOS (3+Pg)
o] (9 9s) € T g e

with0<9<c~9.,
U (?’ ?.) + e«-—lkrcas(p o
E, _ i with a—?.<?<u
o] (3 ) FeT e
with <@~ z-!-?..

o (s %) with 249 <9<% (3.21)

\

if one face of the wedge (0<% <a—=) is illuminated, and

(of (2. %)+ 2 =9 a—a)+
+ o= lhrcos (o —%e__ 0~ thr cos (9 + %e)

with 0<p<s—2s
v} (9, ?0) 407 (@ —2, a—9,)+
feTtret T yith z—g<p<a—*®
e _| o (o 2ol @9 =90+
fetrentmanl yith a—alp<ln
vy (9, ?°)+v:'(a~?r a— )+
+e—-mcos(v-w with =< <28 —%— Py

v (@ Po)F 0 (a— 9, a—a)+
_ + e‘“"’ cos(y — ¢q) a-—ikr €08 (28—~ 9 ~~ o)

with 2a—%— 9, <P <3, (3.22)

)




if both faces of the wedge (@a—=<9, <% are llluminated.

Now let us calculate the field arising during diffraction by a
wedge of a plane wave (1.24). The field scattered by the first face

(¢ = 0) is determined by the relationshilp

0A,
‘;-_—_:_...T. ’
y (3.23)

H,‘:‘-‘-‘»ngo.

One may write the component Hz in the form
Htm”‘éﬂgt%li (3'24)
or

i
H‘:‘““Q"Hu'lz withoe<=,

. H:”}‘Hn‘lzwith P> (3.25)

The quantity 12 introduced here is the integral

1 y
Izz.;t.s R cos gy — w @ (3.26)

-0

along the infinite contour which passes above the pole w = k cos ¢O'
This integral, precisely the same as integral Il, is transformed to
an integral along the contour DO‘ As a result, we obtain

(0F (@, 90) e~ M yith0cp<m— P
a0t @ e with 2 —g <<% .
Ao | vy (P, ?,) with e p < 90
| |75 (@ 9a) — e T with w bR < P (3.27)

where

_— ;[ sin(E £ g)aftreont
ifi (?? ’?@}%w §i§§3?’+§33§§§:?} ’

(3.28)



In the case when both faces of the wedge are 11luminated, the fileld
scattered by the second face also 1s determined by Equations (3.27)

and (3.28) in which one need only replace ¢, by a - ¢4, and ¢ by

a - ¢.

Then adding the fileld radiated by the nonuniform part of the
current with the incident wave (1.24), we find the diffraction field

in the physical optics approach. This equals

+ --lh cos (9 — ¢¢) ~ [kr cos (7 +9
vy (9, %)+ MR ol

with 0o <l®— P

v;. ( ? ?‘) +'e-mrco: (¢ —~ %o

=1 with r—9, << %

0;. (?’ ?.)_}_e-lkr cos (9 — 9. '
with r< <%+ Pn

v (9 90) - with 749 ?<%

if one face of the wedge is illuminated, and

(0} (7, 9) 07 (2 — 9 a—33)F
+ a—threos (s — v)) + e"'"" €08 (7 + %a)

with 0<P<m—Pn
vy (9 %) +0; (a—¢ a—9)+ ,
etrenf = ith r—p<p<la—m
o7 (9, ) +07 (2 —@, a—9,)F |
fetrenle=n  ith a—r<e< 5,
o5 (s 90 ‘+vf (a— @ a— )+
+ e threoste —vd a4y ’F‘<Q < 20— % —Py,

v (9, 9o)+0; (a—9, a—95)+
+ e-&r o8 (9 — 9,) + e-!tr €08 (28 — P == 9y)

with2a—z—@, < P <8

1f both of 1ts faces are illuminated.

(3.29)

(3.30)



The integrals Vi, V; generally are not expressed 1in terms of
well-known functions. However, by using the method of steepest
descents, it 1s not difficult to obtain their asymptotic expansion
when kr >> 1. Far from the directions ¢ = m * ¢O and ¢ =20 - T = ¢O’
the first term of the asymptotic expansion glves us the cylindrical
wave diverging from the wedge edge. In the case of wedge excltation
by a plane wave (1.23), these cylindrical waves are determined by

the equation

l(kri-«})
S e
E‘—-"fo""H’%E“‘io“ ’2“”-;; ] .
E,.--':H;r::o, | (3.31)

and with the excitation of the wedge by a plane wave (1.24) they are
determined by the equation

_ ’ t(ars 5 ]
. Hy=E =H, g 2—— )
' V 2nkr

H,=E,=0. . (3.32)

The functlons fo and go have the form

f':.-—:_.___..ﬂﬂl’-——-
cosy +Cos vy
g':::... 31“’
cosy+ CoSye ' (3.33)

if one face of the wedge O<g <a—1=) >, and

sin g, - sin (@ — 94)

i'zcosg+cosq, +cos(a-—-?)+cos(a-—-§.) ' . ~
. sing _ sin (s —9)
g=- €OS ¢ - CO8 ¢y cos(a-«,)+cos(z—»7,) ' (3-3“)

if both of 1its faces (a—1<g<nt) are 1lluminated. The index "0" for
the functions fo and go means that the cylindrical waves (3.31) and
(3.32) are radiated by the uniform part of the surface current (30).



§ 4. The Field Radiated by the Nonuniform
Part of the Current

In § 1 and 3 we represented the rigorous and approximate expres-
sions for the diffraction field by integrals along the same contour
in the complex variable plane. By subtracting the approximate expres-
sion from the rigorous expression, we find the fileld created by the
nonuniform part of the current. It 1is determined by integrals of the

type
tkrcos $
,i,”(_“' P P Qe (4.01)

_ i .
which, with the replacement of the variable § by s=}2e i'sm% , are

transformed to the form

~ |
™ [ 7@ 9 ) e M ds (4.02)

—0

and may bé approxfmately calculated by the method of steepest

descents.

For this purpose, let us expand the function q(s) into a Taylor

series

7(a, 9 %0 ) =G+ G5+ 25"+ - - (4.03)
Let us note that expansion (4.03) does not have meaning only in the
particular case

P==rntt P, with ¢,=0; =, ~
: ' } (§.04)

p=2a—x— ¢, Withpy=2—"m

when the observation direction (¢) coincldes with the directlon of
propagation of the incident wave glancing along one of the wedge face



Substituting series (4.03) into Equation (4.02) and then perform-
ing a term by term integration, we find the asymptotic expansion for
the field radiated by the nonuniform part of the current. We 1limit
ourselves to the first term of the asymptotic expansion, omitting
terms of the order (krj~’* and higher. As a result, the required fileld

from the nonuniform part of the current will equal

N { (kr + —2)
.

I ] 1
z H, E“f Vi‘n—k-;
E'..--.-:H,::O V (M-OS)

with wedge excitation by plane wave (1.23), and

e
i kf+‘-—)
]

. I 1
Him B = Hud'
H, = E,=0 (4.06)

wlth wedge excitation by plane wave (1.24).

By calculating, with the help of Equations (4.05) and (4.06),
the nonuniform part of the current, it is not difficult to see that
it is concentrated mainly in the vicinity of the wedge edge. But the
field created in the region kr >> 1 by this part of the current has
the form of cylindrical waves, the angular functions of which are

determined by the relationships(l)

f'-’-‘-‘-‘f"‘f.'v gl______é__,go, (4.07)

where in accordance with § 1 and 3 we have

f sin-f'
- n 1 i
= -
n n oo ® §
g cos-;--—-cosq; n?. cos-; - COS ""‘“"9 -:?.

(=5

(1)

Footnote appears on page 42.



and

o = sin gy ‘
T Gosgtcosge

____ . Sine
g'= oS ¢ 4 COS Py’ I (4-09)

1f one face of the wedge is i’ uminated (that is, when 0<pela—z ),

and
i.‘*_ sin P ‘ Siﬂ(d -—-C')
= cos ¢ + €05 9y “-03(4“9‘*“"03(““’?') '
. sin® _ sin(a —yv)
g €OS ¢ - COS o cos (@ — §) + cos (= — go) ' (4.10)

if both faces of the wedge are i11luminated (that 1is, when a—n<go<<T ).
Let us recall that the functions f and g describe the cylindrical
waves radiated by the total current — that 1is, the sum of the uniform
and nonuniform parts, and the functions fo and go refer to the
cylindrical waves radiated only by the uniform part of the current

3%).

Let us note certain properties of the functions fl and gl. The
functilon f1 = fl(a, $, ¢0) is continuous, whereas the function gl =g
(o, $, ¢O) undergoes a finite discontinuity when ¢, = & = n. The
reason for this discontinuity is that the uniform part of the current
differs from zero on the face along which plane wave (1.24) is propa-
gated (with ¢O = q - W). In the case of radar, when the direction to
the observation polnt coincides with the direction to the source
(¢ = ¢O), both functions fl and gl are continuous. There is no dis-
continuity of the function gl with ¢ = ¢0 = g - m, because the current
element does not radiate in the longitudinal direction. B

1

On the boundary of the plane waves (that is, when p=n*go and
p=2a—n—¢qo ) the functions f, fo and g, gD pecome infinite, whereas
the functions fl and al remain finitce, In accordance with Equations

(&

(4.07) =~ (4,10), they take the following values



gt ccs;':»-—cos?:% (4.11)
if ¢ =T = ¢4 and ¢, < o = T,
—-!-sin*ﬁ- . |
1 n n 1 1 "w
P=—m——=gtren gy
cos — — €08 ’
- sin (& — ¢,) .
T wsE—p) Feos@a—va \
-!—sln-?-
. B n L 1 " )
g'=— 9..%+‘§‘Cf3%-2-nctg -z-+
cos o —€os —¢
sin{a — ¢) Y
+ cos (a — ¢) -+ cos (= — gs) ' ) (4.12)
if¢=w-¢aanda~*n'<¢o<1r, and
f‘] ‘:‘"‘Siﬂ‘;’ l ! ”.
‘!«—“—-z —— T, TR
£ R (4.13)

if¢=n+¢0, and¢0<a—'w. Thevalu'eq)=1r+¢0witha-1r<¢o
< 7 corresponds to the angle inside the wedge, and therefore is not
of interest. In the direction of the mirror-reflected ray ¢ = 200 - T
- $g> the functions £1 and gl apre determined (with a — T < ¢4 < T )

by the following eguation:

1 = ‘ _
f“—‘ nSlﬂn.> _ sin v, +
ccs% --cosg-:i-n cos ¢ -+ co8 e

+loaga—p)tmcEs (4.18)

n n i
g'=—  RTrER TR

» — P9 cos 9 -+ cOS ¥»

T L
+1clg(a—p)—5 187 -
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The functions fl and gl have a finite value everywhere, except
for the particular values ¢ and %0 enumerated in Equation (4.04). The
graphs of the functions £l and gl (Figures 8 - 13) drawn in polar
coordinates give a visual representation of the effect of the nonuni-
form part of the current which is concentrated near the wedge edge.
In particular, they show that this effect may be usbstantial for the
fringing fleld not only in the shadow region (A+e<esa), but also in
the region of light (0<¢<a+go) . The continuous 1ines in the figures
correspond to the funétions fl (fl < 0). The dashed and dash-dot lines
correspond to the functions gl — the dash lines refer to the case
gl < 0, and the dash-dot lines refer to the case gl > 0.

A— l".
— ————- "‘

PUR—— ,’,'

—

@-150°

L350’

Figure 8. The diagram of the
field from the nonuniform part
of the current excited by a
‘plane wave_on a half-plane. The
function fl (or gi) corresponds Fi%uretg. The same as Figure 8
to the case when the electric or the case ¢ = ¢4
(or magnetic) vector of the
incident wave is parallel to the
wedge edge.

Let us turn our attention to the next important aspect. As is _
seen from § 1 and 3, the nonuniform part of the current on the wedge
is described by a contour integral which 1is generally not expressed
in terms of well-known functions. But in order to calculate the field
scattered by some cCONnvex, ideally conducting surface with discontinui-
ties (edges), the indicated expression still must be integrated over
the given surface. Obviously, such a path 1s able to lead only to
very cumbersome equations. Therefore, henceforth, when calculating



ot /// ’ -
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//

eeeeeeeee
b, = 150°.
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Figure 12. The same as Figure 10
for the case ¢ = ¢O'

Figure 13. The functions fl and
gl for a wedge (¢ = ¢ O = 210°).

the field scattered by'COmposite bodies, we will not integrate the
explicit expfessions fbr the nonuniform part of the current, but we
will endeavour to express these integrals directly in terms of the
functions fl and gl which have bean found.

§ 5. The Oblique Incidence of a Plane Wave on a Wedge

Above, the diffraction was studled of a plane wave incident on
a wedge perpendicular to its edge. Now let us investigate the case

when the plane wave

Eonelk(xcasc:l-}M/coss-l)-z‘cosﬂ (5.01)

falls on the wedge at an oblique angle T(0<:T<:§) to the wedge edge
(Figure 14).

From the geometry of the problem, it follows that the diffraction
field must have that same dependence on the z coordinate as the field

of the incident wave, that 1is

Ty WO DO R0LT 3



g | E=E (s, y)eikzcosr’ )
' ' H=H(x, y)e**"T. } (5-02)

Using Maxwell's equations

0

7
rotHl_::wlkE. rotE =ik H, (5.03)

Figure 14 Diffraction by a one is able to obtain the follow-
wedge with oblique incidence of ing expressions for the radial and

a plane wave. Y is the angle . .
between the normal to the incident azimuthal components of ‘the field:

wave front and the 2z axls.

S | 10H, JdE,
£, = Eksin’1(7 oy +c°87°5; ‘
1 fVE OHe\
H'”"iksinw(?’ﬁ?”c"s ‘b‘?)'
F =L (%  cosydE
? iksin*y\ or r d9 /'
1 dE, cos1aﬂ.4 -
H,= ksin®7 W-*_ r 3,)' (5.04)

The functions EZ and Hz in turn satisfy the wave equations

AE, 4K Es=07AH .+ ity H:=0, (5.05)

where

o, o ;
bt 2 and b= hsint. (5.06)

In § 4 we found the fields (4.05) and (4.06) which satisfy the.

equations

AE, 4 E, =0, AH,FkH,=0 (5.07)

and which are created by the nonuniform part of the current excited

on the wedge by the plane wave
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E:“E‘ewlk(xcosq.i-yﬂny.)' (5.08)

-

Representing Expression (5.01) in the form

E=E glhrcos 1=k (x corsy +ysin e (5.09)
i .

and comparing Equations (5.05) and (5.07), we easlly find the field
created by the nonuniform part of the current with the irradiation of
the wedge by plane wave (5.01). For this purpose, 1t 1s sufficient to
replace in Equations (4.05) and (4.06) k by k,, and E,, and H, by

E ™7 and H,e* " . As a result, we obtain

ke + ;-
Ey=—H, =Eul* (9, 9) e ™0
ey
ifhkye + ol
Hi=E,=Hyg" (9, 9)) e &7 (5.10)

V 2xk,r

The angie ¢0 intrcduced here is determined by the condition

elk(xcese:+ ¥ cos .'*)_m e—-—-lk,k(fcosv.-l- y:in?,) , (5 ) ll)
hence
__cos}
tg?‘“co'“ . (5'12)

The remaining components of the field created by the nonuniform
part of the current with the oblique incidence of a plane wave are
found from relationships (5.04), and when kr >> 1 they equal

E}z-—-—ctg'{E, H,-..—.:‘--ctgyii, -

st

¥  siny

He H,=—_1-E. T (5.13)

siny
The equiphase surfaces for these waves have the form

rsiny4-zcosy==const . (5.14)
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and are conical surfaces, the generatrices of which form the angle

m/2 + y with the positilve direction of the z axis. Thus, with oblique
irradiation of the wedge by a plane wave, the field created by the
nonuniform part of the cqrrent i1s a set of conical waves diverging
from the wedge edge. The normals to the phase surfaces of these waves.
form an angle y with the positilve direction of the z axlis and are
shown in Figure 15. These waves may be represented in a more graphic
form if one introduces the components (see Figure 15):

E = E,cosY— E,siny, }

H =H,cos1— H,sinT. (5.15)

Then the final expressions for the fringing field in the far zone will

have the form

E‘tf“zﬂvw'— siny E,,
1
Hﬂwﬁ'?z-—- H,. (5.16)

Now we are able to proceed to the application of the results
which have been obtained for the solutinsn of specific diffraction
problems. The simplest of them 1is thre problem of diffraction by an
infinitely long strip which has a rigzorous solution [23] in the form
of Mathieu function series. However, in the quasi-optical region
when the width of the strip is large in comparison with the wavelength,
these series have a poor convergence and are not sultable for numeri-
cal calculations. Therefore, the requirement arises for approximation
equations which are useful in the quasi-optical region. The derivation
of such equations for a fleld scattered by a strip will be gilven in

the following section. -

§ 6, Diffraction by a Strip

Let us investigate diffraction by an infinitely thin, ideally
conducting strip which has a width of 2a and an unlimited length.
The orientation of the strip in space 1s shown in Figure 16.
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Figure 16. Diffraction of a
plane wave by an infinitely long

Figure 15. The cone of diffracted strip. The section of the axis
y (-a < y < a) shows the trans-

rays. <
verse cross section of the strip
wlth the plane z = 0; o is the
angle of incidence.

Let a plane, electromagnetic wave strike the strip perpendicular
to the edges. Let the direction of propagation of this wave form an
angle ¢O¢l<:§j with the plane y = 0. The field of this wave 1s

represented in the form

i ik({xcosa $ t *
E—-E,e « vsna). H______H.elk(xcos--&-ps!n-). (6.01)

The uniform part of the current excited by the plane wave on the

strip has the components

=0,

0o__ ¢ thyaine
I,'—"Q‘;'Hoze ’

9__ € ‘ iaysias
!3”23 EQ;COSCG ‘ ’j (6’02)

se values 1nto the equation for the vector potential

Substituting the

BN



. a o
1 A LRV IR iy 4O
A:«---—-51°(n)dnl =
c ¥V it
o < x4 (y—0' +4 (6.03)

and taking into account relationships (3.05) and (1.18), we obtain

the following expressions 1n the region r >> ka :

A:zoi
<
I(lf‘l"r) ‘
A’ »-3...[1 sin[ta (sina—sing)] €
v= TR e sina—sing Y ozkr

sin[ta(sina —sing)j e
sina—slag Vg,—",}}}'

i (kr-f-—:—-)

(6.04)

2
Ag == T Eoz cosa

L

The components of the fringing field in the cylindrical coordinate

system equal

E,=—H,=ikA, H.=E, =ikA, (6.05)

where

A,==Aym$9—~A,ﬁu?. (6.06)
Substituting Expressions (6.0&) here, let us determine the field
radiated by the uniform part of the current

I8

. "‘ i(kri%‘-)
:“x‘-‘H 3250:‘:052 sin[ka(sin:——-sin?)] £ ———
, % sina—sing Y 2nkr
N t(kﬂ%’i)
T sin[ka(sina—sing)] €
E;““‘H‘“‘QH“COS? sing —8ing Y oxkr ) (6.07)

This fileld may be represented in the form of cylindrical waves diverg-
ing from the strip edges



E‘”‘:“""H,wEoz'”o(l)ema(sm‘“"mﬂ.{_
| :(kr+{—)
0 (6 ~iha (sino—sing) & !
+/°@2)e ]W;fm
E:’&H,'m ng'[g”(l) elka(ﬁn a-sin 9}_*_
‘ t(ku{.)
0 (2 e—-tta(sln;-sm;) ¢ .
+e°@) 1S5 ) .08)

Here the first terms correspond to the waves from edge 1 (y = a), and

the second terms correspond to the waves from edge 2 (y = -a). The

0 0 (o<
functions £  and g are determined in the right half-plane lpl<3
by the equations

cosa

/* (1)““’f°(2)xm'

cosy

g()=—g'@ ;‘“‘m-

(6.09)

Now 1et}ﬁs find the field radiated by the nonuniform part of the
current. Assuming the strip 1s suffilciently wide (kxa >> 1), one 1s.
able to approximately consider that the current near its upper edge
is the same as on the ideally conducting half-plane —o°<y<a, ‘and
near the lower edge it is the same as on the half-plane —@<y<oo .
Therefore, in accordance with § 4, the field from the nonuniform part
of the current flowing on the strip may be represented in the form of
the sum of the edge cylindrical waves.

E;=—H_ = ",U:'(l)elkn(slns——slny)_*_ )
’ .

l(kr-i--:-)
1 —~ika (sina—singly &
+1'@)e et
E’:.—_: H;z H“,lgt (1) elka {sinx—sin g)+
2(r3)

+g; (2) ewika {sin g—3in q)l —,
: yske (6.10)

where the functlons £+ and gl are determined in the right half-plane

£ 4
Q?5§;§)'by the equations
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fy=fm—1as f‘(2)—-*=f(2)~if(2).}

' ' : 6.1
S=g(M—g' () g@=e@—g@ (6.11)
in connection with which
5033«';:3“5;,,““?
f(l)x sina-—sing¢
cosa;?+sina;?
f@)=— sanwsan
cosa§?+sina;,
g)= sina—sing '
u.coﬁa“;?%:.sina;?
g(Z):.- sina—;sing 6 12)

The functions £0 and go are described by the relationships (6.09).

As a.result, the fringing field (the sum of the fields radiated
by the uniform and nonuniform parts of the current) will equal

Eo—=—H, = E[[ ()™ "7
1 kr+-:-)
‘Ff(Q)e“”“““"'mﬁqe

, } 2rkr
E,=H.= Hoe-[g(1)e™ (Ina—sing) 4
el (kr-i-.r) ’

9 —{ka (sin a—sin ) .

Consequently, the resulting field is expressed only in terms of
the functions f and g which determine the cylindrical wave in the-
rigorous solution (see 8 2)., The field is the superposition of two
such waves which diverge from the edges 1 (y = a) and 2 (y = -a).

Substituting into Equations (6.13) the expliclt Expressions (6.1:

for the functions f and g, we obtaln

- s e e ¥a)



Cﬂ'ﬁ ] 14

E;z»H?mEn{“ms{k“ (shna—singl |

thre =
+ i sin[ta(sina—sing)] | e ( ‘)
. a-—9 } y 2-kr

sin'“'z““'

jcos [ka (sin a — sin ¢)
E?“,..“.:‘.Hzf.:lfax{ a , ?]+

cos 2

+i —
L, 39 Y 2ngrr
sin—3

: i ke
. sin[ka (sin 2 — sin 7)] }g ( ’ ‘)

g (6.14)

These equations are valld when r >> ka2 and 191<L%. Moreover, it is
assumed that ka >> 1, since only under this condition is one able to
consider the nonuniform part of the current in the vicinity of the
strip's edge to be approximately the same as on the corresponding
half-plane. In the case of normal incidence of a plane wave (0 = 0),
Equations (6.14) change into expressions corresponding to the first
approximation of Schwa:zséhild [15].

From relationships (6.03) and (6.05), it follows that the elec-

tric field is an even function, and the magnetic field an odd function,
of the x coordinate measured perpendicular to the plane x = 0 (in
which the current flows)

E(x)=E:(—x), H.(x)=— H:(—x). | (6.15)

Therefore, on the basis of Equations (6.14) and (6.15) one 1is
able to write the expressions for the fringing field in the region
x < 0 (where <lp|<=)
cos[ta(sina—sin’y)]

—y
sin 2

‘mwﬂ’ztf‘“{

—1i

¥

i {rre=
sin[ta(sina—sing)] ) e { ‘_)_
.

at9
,c0$2

b

?
sla 3

E, =H, == H,,.{"GSI’M (tna—siag)l

(6.16)



4
o (kr+~4-)
¢

. sin [ka (sin a — sin ¢)]
+i } Vaakr
(6.16)

a

: ?

cos 2
Here one must select the upper sign in front of the braces when
¢ > 0, and one must select the lower sign when ¢ < O.

The resulting Fauations (6.14) and (6.16), in contrast to
Equations (6.07), satisfy the reciprocity principle. It is not diffi-
cult to establish this by verifying that Equation (6.14) is not
changed with the simultaneous replacement of o by ¢ and of ¢ by &,
and Equation (6.16) is not changed with the replacement of a by T + ¢
and of ¢ by a - 7 (if ~?“<:?<:*-%l) and with the replacement of o by

T - ¢ and ot ¢ by T - a Mf-§<@<ih

However, the indicated equations lead to a discontinuity of the
magnetic veqtor tangential compcnent Hz on the plane X =’O. This 1s
connected with the fact that, by considering the nonuniform part of
the current in the vicinity of the strip's edge to be the same as on
the corresponding half-plane, we actually assume the presence of
currents on the entire plane containing the strip. In order to refine
the resulting expressions, it 1s necessary to solve the problem of
secondary diffraction'- that is, diffraction of the wave travelling
from one edge of the strip to its other edge. In other words, it 1is
necessary to take into account the diffraction interaction of the
strip's edges. As we see, it is also necessary to take 1nto account
the secondary diffraction in the case ?=ﬂi>§- when the Hz component

of the fringing fleld must equal zero.

In Chapter V, we will return to the problem éf diffraction by a
strip, and together with the investigation of the secondary diffrac-
tion, we will present the results of the numerical calculation based
on Equations (6.07), (6.14) and (6.16).
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FOOTNOTE

Footnote (1) on page 27 The designations used here differ
slightly from those used in the
papers [7 - 11]. The functions f
and fl there were designated by
fl and £, respectively.
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